

Visualization and Analysis of Transportation-Specific Datasets

Michael Hope, Vadim Sokolov, Hubert Ley
Transportation Research and Analysis Computing Center
Energy Systems Division
Argonne National Laboratory

Current Trends in Transportation Visualization

- APIs to Plot on Existing Mapping Websites
 - Google Maps API
 - Yahoo Maps API
 - Bing Maps Platform
 - OpenLayers
- Web-based interfaces to GIS visualization
 - ArcGIS Online
 - MangoMap
- Web-based interface to transportation models
 - Cube Cloud
 - Vista
 - Cattlab at University of Maryland

Advantages of Web-based Tools

- Lower Upgrade Cost
- Lower Software Maintenance Cost
- Access Data Anywhere
- Cross Platform
- Share Data
- Scalable Processing Power
- Scalable Storage Space

Underserved Capabilities of Existing Web-Based Tools

- 3D Rendering
 - Extra spatial analysis dimension
 - Presentation quality
- Time Set Visualization / Data Streaming
 - Extra temporal analysis dimension
 - Create videos
- Desktop Application Level Performance
 - Larger areas
 - Larger datasets
 - More visualization real-estate

Underserved Capabilities of Existing Web-Based Tools cont'd

- Open Source
 - Free, unlicensed
 - Anyone can modify
- Transportation Specific
 - Analytics useful to researchers
 - Compatible with popular transportation models
- Non-commercial cloud storage and processing
 - Security issues
 - Data privacy

TRACC - A National User Facility to Meet USDOT Advanced Computation Needs

- USDOT and USDOE transportation research programs, private industry, and state and regional transportation agencies are moving to simulation-based design and analysis for improvements in efficiency, economics, and safety
- Higher fidelity analysis in areas such as crashworthiness, aerodynamics, combustion, thermal management, weather modeling, and traffic simulation require access to state-of-the-art computational and visualization facilities
- Argonne expertise in high-performance computing and transportation system analysis provides the basis for a national HPC user facility and a focal point for computational research for transportation applications

Visualization and Analysis Tools at TRACC

- Metroview
 - Web-Based Transportation Visualizer
- Antares
 - Simulation Graphics Library
- POLARIS Analyzer
 - Common Analytics on Transportation Datasets
- Network Editor
 - Cross-product Network Editing

METROVIEW

- Web-based Transportation Visualizer
 - 3D Visualization
 - Dynamic Time Series Visualization
 - Desktop-Level Performance
 - Open Source
 - Hosted at Argonne-TRACC

Features:

- Network Visualization
- Link-based Measures of Effectiveness
- Vehicle Trajectory Visualization
- MongoDB Data Storage
- Open Street Map Tiles

Metroview Architecture

Metroview - MongoDB

- Non-SQL Database
 - Redesigned Query Language
- Document-Oriented Storage
 - JSON Format
 - Extremely Flexible
- Higher Performance, Scalable
 - Larger Queries
 - More Users
- Multiple Drivers
 - Python, Java, C++

Json Example

Metroview - Google Native Client

- Novel Web Framework by Google
 - In Active Development
- Run C++ Programs Through a Browser
- OpenGL ES 2.0 Graphics
- Near Desktop Level Performance
- Robust API
 - Multithreading
 - HTTP Requests
 - File IO

Metroview - Internal Task Scheduler

- Advanced Task Management automated multithreading
- Submit Work to 2 Types of Queues:
 - Traditional "immediate" work queue
 - Time-dependent queue with "execute after" and "execute by" time
- Time Independent Queue
 - Performs work in FIFO order
- Time Dependent Queue
 - Used in conjunction with visualizer time stepping
 - Visualizer states what time it would like to advance to and authorizes it
 - Flexible scheduling allows significantly better load balancing
 - Automatic merging of requests when scheduling permits
- Time Dependent Threads can Migrate to Time Independent Work

Metroview - Map Tile Loading

- Currently utilizing MapQuest-OSM Tiles
- Soon to be compatible with MapQuest Open Aerial Tiles
- Downloaded as you navigate
- Compatible with Slippy Map Tilenames
 - MapQuest
 - MapQuest Open Aerial
 - OSM standard
 - OpenCycleMap
 - Migurski's Terrain
- Underlying EPSG:3857 projection
 - Seamless navigation across UTM zones
 - Properly aligned tiles

Metroview - Miscellaneous

- Tabularized Data Viewer
- Websocket Server Connectivity
 - Extremely low latency
 - Faster downloads
 - Very reliable connection
- DOJO
 - Popular Javascript UI Library
 - Many Standard Widgets
 - High Performance Widgets
- HTML5
 - Local Storage
 - Video / Audio

Metroview - Future Directions

- Side-by-side Comparisons of Multiple Network Elements
- Server-side Analytics
 - Statistics
 - Regression Analysis
 - 2D Plots
- Run Custom Python User Scripts
- Data Conversions from Popular Tools
 - Vissim
 - Transmodeler
 - DTALite
 - DynusT
 - Etc...
- Real World Data Visualization
 - GPS Traces
 - Open Traffic Information

What is POLARIS?

- Open Source Middleware for Developing Agent-based Models
 - Data Interchange
 - Visualization
 - Case Study Generation and Analysis
 - Discrete Event Simulation
 - Interprocess Communication
- A Repository of Transportation Libraries
 - Common Algorithms
 - Extended by Researchers
 - Standardized Style and Structure
- Fully Developed Applications
 - Transportation Network Simulation
 - Integrated Activity Based Simulation

Antares

- Graphics Library for POLARIS
 - Visualize in 3D or plot in 2D
 - See the real time state of your simulation
 - Inspect and change simulation elements on the fly
 - Create videos

- Technologies
 - WxWidgets
 - OpenGL
 - Plplot
 - FFMPEG

Antares - Developer Tools

- 3D Drawing Without Needing to Know OpenGL
- Organized Into Developer Allocated Layers
- Fully Integrated with Simulation and POLARIS Core Libraries
- Identification capabilities automatically identify objects
- Set up events which trigger on clicking

POLARIS / TRANSIMS Network Editor

- The network is stored as a relational database using SQLITE3
- The network editor is just one of the applications using the database structure:
 - POLARIS tools access the network directly from the database
 - Quantum GIS is natively capable of working directly with the network database
 - Spatialite and Sqlite3 tools can be used to modify and edit the network as well
- The graphical user interface is both part of TRANSIMS Studio as well as Polaris
- Emphasis during development was to provide efficient editing tools that understand the network topology
- Background imagery is available at high resolution in a special format suitable for extremely fast editing

Orthorectified Imagery

- Orthorectified imagery from USGS is readily available at TRACC, with most imagery being at the most 2 years old (NAIP imagery)
 - NAIP dataset covers the entire US in full color (plus infrared)
 - Resolution is approximately 1 meter per pixel
- High resolution orthorectified imagery is available for certain urban areas at up to 025 meters per pixel
- The imagery datasets are processed on TRACC high performance computing systems and are provided in a highly efficient tile format to editing applications

Network Topology

- The network editor understands the topology
 - Nodes, Links, Pockets, Connectivity, Signals, Signs, ...
- As shown on the right, moving a node will move all related objects as well
- The network database enforces relational integrity
 - This is an important feature, because it means that no client application, including the network editor, can actually break the relational integrity of the network
 - Changing any network features happens with a database transaction, meaning that the network can never be forced to be inconsistent
 - For example, a node cannot be deleted if a link still exists that uses this node
 - This is true throughout all relations a total of about 60 relationships is enforced
- This is also an important feature when using third party tools such as Spatialite or Quantum GIS to work with the data
 - Relational integrity is enforced on the database level, preventing any client application from damaging relationships between network components

Intersection Editor

- Connectivity at intersections is highly configurable
- Rules can be defined based on facility type and similar criteria to establish a reasonable configuration that can then be fine-tuned for a specific intersection
- An example for Upper Wacker Drive and Monroe is shown on the right
 - Very complex intersection
 - Ramps from and to Lower Wacker
 Drive are fully represented
 - Connectivity is link to link, but allows for lane ranges inbound and outbound
- Groups of nodes can be selected in the general interface to apply automatic rules, e.g.
 - Reasonable choice of turn pockets based on lane permanent lane configurations
 - Thorough analysis of THRU connections, and proper choice of turn types

Data Analysis

- Quickly, efficiently manage data
- GUI for analyzing simulation results
- Statistical analysis and data aggregation tasks
- Produce graphs and charts

Data Analysis

- Data is stored in a relational database with spatial capabilities
- User can define data processing steps in a form of
 - SQL Statement
 - Python script
- User can define type of analysis on each of the data items
 - Regression Analysis
 - Clustering Analysis
 - Exploratory Analysis (plots, charts)
- Procedures are stored in a form of a script and json file and can be applied to multiple data sets

